Numerical Simulation of 3D

Debris Flow incurred by Reservoir Failure

Jan. 16, 2020

Prof. Sungsu Lee Dr. JooYong Lee, SG Lee, JA Um

Chungbuk National University

Introduction

- Concerns about dam and reservoir collapse due to heavy rains, sudden downpours and typhoons caused by global warming have increased.
- In the 20th century, more than 200 dam failures occurred worldwide, and more than 11,000 casualties were incurred.

Introduction

- Concerns about dam and reservoir collapse due to heavy rains, sudden downpours and typhoons caused by global warming have increased.
- In the 20th century, more than 200 dam failures occurred worldwide, and more than 11,000 casualties were incurred.

Introduction

- In Korea, two-thirds of the annual rainfall is concentrated in the summer months. and localized heavy rains are frequent.
- Since 61, About 100 cases of dams and reservoirs collapses have been reported.

Reservoir	Year	Casualties	재산피해
		110 dead	

Hyogi	1961	57 missing 9,800 displaced	More than 190 Houses
Gudeok	1972	60 dead 15 missing 48 injured	-
Sandae	2013	-	1.2ha Farmland 13 Vehicles 5 Houses 6 Malls

Among the 76 reservoirs of D grade in 2018, 64 in D grade in 2019.

(Grade D: requiring urgent repair, reinforcement, or restrictions on use)

Predicting the damage and prioritizing the maintenance ranking using numerical analysisment with the set of th

- Experimental Study
 - 단순화된 2D 단면 형상 댐 붕괴 실험 및 고정된 수로에서 수행됨
 - Terrain slope cannot be considered.

- Numerical Simulation Study
 - 2D Numerical Model Utilization such as FLO-2D, DAMBRK.
 - Does not take into account the effects of debris flow.
 - The limitation of the 2d model : analysis of the initial rapid current collapse.

Development of Numerical Model for Reservoir Failure by 3D Multiphase Flow Analysis Considering Real Terrain and Debris Flow.

Governing Equation & Computational Method

OpenFOAM •

Phase 2

- Unsteady, Incompressible Navier-Stokes Eq. •
- Multiphase Flow Analysis : Air, Water, Debris
- Applying VoF(Volume of Fluid)
- Nonlinear Viscous Fluid

Debris Flow Property - Nonlinear Viscous Fluid

Modified Herschel-Bulkley

- Considering composition ratio and water content of soil •
- Shear stress determined by the water content •
- Calculation of parameters by experimental verification

$$\tau = \tau_y + k\dot{\gamma}^n - \begin{bmatrix} \tau_y = \tau_0 C^2 e^{22(CP_1)} \\ \tau_0 = \begin{cases} \tau_{00} Pa & C \le 0.47 \\ \tau_{00} e^{5(C-0.47)} & C > 0.47 \end{bmatrix} \\ P_1 = \begin{cases} P_1 & P_1 \le 0.25 \\ 0.27P_1 & P_1 > 0.25 \end{cases}$$

- Coulomb-viscoplastic
 - Consideration of friction angle of soil during viscous flow •

$$\mu = \mu_{min} + \frac{P \cdot \sin(\delta)}{||D||} [1 - e^{-m_y ||D||}]$$

Selection of Reservoir to be Verified: Sandae

- Date and Time: 2013. 4. 12(Fri) 14:00
- Site: Angang-eup, Gyeongju-si, Gyeongsangbuk-do, Republic of Korea
- Cause of Damage: Embankment collapse(L=10m, H=8m) due to soil erosion caused by leak of channel, Accidents occurred while preparing for a precision diagnosis as the D grade was determined in the safety inspection(`13. 3. 12).
- Action status: Low-lying resident evacuation(100 people), Emergency recovery, Maintenance around flooded areas, etc.

Go et al(2015)

Lee et al(2015)

Estimated damage area : 177,750m²

Estimated damage area : 394,513m²

* Estimated damage area : Survey and field survey

Go et al(2015)

- Numerical model : FLO-2D ٠
- Number of grid : 50,693개
- Damage area as a result : 196,400m²

Lee et al(2015)

- Numerical model : FLO-2D
- Number of grid : 218,091개 ٠
- Damage area as a result : 355,005m² •
- Total damage area flood time: 20min •

- residential areas flood time: 20~30min
- Added building layers extracted from satellite data ٠

Computer Modeling – Sandae Resevoir Sandae resevoir Completion (year) 1964 Dam body (m)

Analysis result – Sandae Resevoir

Go et al(2015)

Lee et al(2015)

alysis C			
	Neungcheon resevoir	Sanmak resevoir	Jeosa resevoir
Completion (year)	1945	1945	1983
Dam body (m)	Height 7.2 Length 122	Height 10.6 Length 131	Height 20 Length 71
Useful capacity (ton)	70,650	54,100	55,000

 $\ensuremath{\mathbb{X}}$ Assumption of entirety dam failure

Analysis Results -Neungcheon resevoir

Analysis Results -Sanmak resevoir

Considering Multiphase Flow and Nonlinear Viscosity, Which are the Characteristics of Debris

Simulation of Sandae Reservoir Collapse Results in Predicting more Accurate Flooding Range than Existing Methods

Flood Range Forecast for Three Aging Reservoirs -Neungceon, Sanmak, Jeosa

