Module 14 Crustal Deformation

CRUSTAL DEFORMATION

Although ordinary people might think that the crust of the Earth is permanent and fixed, a great deal of evidence, both direct and indirect, indicates that the crust is in continuous motion and that it has moved on vast scale throughout all of geologic time.

How do we know that the Earth's crust has been and continuous to be deformed?

Direct evidence: earthquake, ...
Indirect evidence: folds, joints, faults, ...

Folded Appalachians, near Harrisburg, PA - USA

Types of Folds:

- □ Anticline = Arch
- □ Syncline = through
- □ Monocline = stair step
- Dome
- Basin

Chevron Fold, Laurel Mt., CA

Anticline

Syncline and Monocline

Think of an Egg Carton!

Virgin Anticline, Southern Utah

Syncline-Anticline Pairs + Domes at Zagros Mts, Iran

NASA "Earth as Art" web page

Grenville Dome: Sinclair, WY

Syncline, Israel

Which deformation and stresses cause theses structures ?

Folding of Shale-Sandstone sequence, Kings Canyon, California

Compressive Forces...

COMPRESSIVE FORCES

Folding

Faulting

Folds axis are perpendicular to the main direction of compression

Folds and Thrust have the same origin

Folds Classification

Isoclinal fold

Oil and Gas Concentrate in Domes

Chernicoff and Whitney

Folds and Faults

Folds and thrust are both responsible for the orogens *R.W.H. Butler*

Fold-thrust complex developed in Upper Jurassic limestones in the Haut Giffre area of the Subalpine thrust belt (Morcles nappe in France)

Continental Extension

Shearing (coupling)

<u>Faults</u>

- result from brittle deformation
- rocks offset across fault
- Sides referred to as "hanging wall" and "footwall"
- -- 3 types of fault

<u>Strike & Dip</u>

- Describe fault orientation
- Direction of slip determines kind of fault: "dip-slip" or "strike-slip"

Chernicoff and Whitney

Normal Fault

Normal Fault (Dip-Slip Fault)

Normal Fault, Lamb Canyon, CA

Reverse or Thrust Fault

Small thrust fault, Las Vegas, NV, Source: M. Miller, U. of Oregon

Strike-Slip Fault

Strike-Slip Fault (left-lateral)

Strike-slip fault near Las Vegas, NV, Source: M. Miller, U. of Oregon

Strike-slip fault displacement in orchard

Folds and Faults

Folds and thrust are both responsible for the orogens *R.W.H. Butler*

Fold-thrust complex developed in Upper Jurassic limestones in the Haut Giffre area of the Subalpine thrust belt (Morcles nappe in France)

JOINTS (FRACTURES)

<u>Joints</u>

- Brittle "cracks" in rocks
- Form near surface
- Regular spatial distribution
- No offset

JOINTS (FRACTURES)

Preferential weathering of joints in Sandstone;

Calcite veins in joints of marble, Laurel Mt., CA

