Module 9 Sedimentary Rocks

SEDIMENTARY ROCKS

- Rocks formed from material derived from preexisting rocks by surfacial processes followed by diagenesis
- ☐ There are two main classes of sedimentary rocks
 - Clastic (detrital) sedimentary rocks are formed from bits and pieces of previously existing rocks, called clasts or detritus
 - Chemical sedimentary rocks are formed in several ways
 - By precipitation from aqueous solution
 - From plant material
 - From animal material

Clastic Sedimentary Rocks

Processes Leading to Formation of Clastic Sedimentary Rocks

- Weathering: the processes that change rocks' size and composition at or near Earth's surface
- <u>Erosion and Transportation:</u> removal of rock particles (clasts) from their source by water, wind, or glacial ice
- <u>Deposition:</u> the settling of clasts on Earth's surface as sediments, leads to formation of a sedimentary bed
- <u>Compaction:</u> pressing together of clasts, squeezing out pore water, by pressure exerted by overlying beds
- <u>Lithification</u>: cementation of clasts together to form a sedimentary rock
- <u>Diagenesis:</u> a process of conversion of unconsolidated sediments to coherent sedimentary rocks

Where do the sediments form?

Resistance of Minerals to Weathering

Effect of Weathering, Gradient, Distance from Source-Rock on Clast Size, Shape, Sorting, and Composition

composition rich in mafic minerals quartz sands and clays and feldspar

Effect of Weathering, Gradient, Distance from Source-Rock on Clast Size, Shape, Sorting, and Composition

Effects of Compaction, Cementation on Sediments

From sediments to sedimentary rocks

<u>Texture</u>:

the relationship between the grains of minerals forming a rock

- a. grain size
- b. roundness
- c. sorting
- d. fabric
- e. fragment, matrix, & cement

a. Grain size:

- Grain (particle, clast, fragment) size is primary distinguishing factor for clastic sedimentary rocks
- Size means diameter of rock's grains

Size (mm)

Sedimentary clasts

Sedimentary rocks

>256	• _	 Boulder
128 – 256	 Coarse- 	 Cobble
64 – 128	• Fine-	 Cobble
32 – 64	 Very coarse- 	Pebble
16 – 32	 Coarse- 	 Pebble
8 – 16	• Fine-	 Pebble
4 – 8	 Very fine- 	 Pebble
2 – 4	• –	Granule
1 – 2	 Very coarse- 	• Sand
1/2 – 1	 Coarse 	 Sand
1/4 – 1/2	 Medium- 	 Sand
1/8 - 1/4	• Fine_	 Sand
1/16 – 1/8	 Very fine 	Sand
1/32 - 1/16	 Very coarse- 	• Silt
1/64 - 1/32	 Coarse 	• Silt
1/128 - 1/64	• Fine-	• Silt
1/256 - 1/128	 Very fine 	• Silt
<1/256	• _	• Clay

Conglomerate (predominantly rounded clasts) or Breccia (predominantly Angular clasts)

Sandstone

Siltstone

Mudstone

Claystone or Shale

Wentworth' Scale

b. Sphericity vs roundness

- Sphericity is a degree of similarity to a ball shape
- Roundness is a degree of roundedness of the edges of a fragment

Shapes of sand grains

Angular

rounded

c. Sorting

Degree of similarity in particle size

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

This quartz grains are:

- -well-sorted
- -well-rounded

d. Fabric

- Opened fabric
- Closed fabric

Opened fabric

Closed fabric

e. Fragments, matrix, cement

- Fragments (clasts)
- Matrix
- Cement

Clastic Sedimentary Rock's Texture The Most Common Sedimentary Cements

• Calcite

- The most common cement present in marine sedimentary rocks
- Also common in sedimentary rocks formed from sediments deposited in evaporite basins
- Calcite cemented sedimentary rocks give a positive acid test (will fizz when an acidic solution is dropped on them)

Hematite

- The cement present in red colored terrigenous (land-derived) sedimentary rocks, very common
- Hematite cemented rocks will not fizz when an acidic solution is dropped on them

• Silica

- The cement present in terrigenous (land-derived) sedimentary rocks that are not red, very common
- Silica cemented rocks will not fizz when an acidic solution is dropped on them

- ☐ Sedimentary Beds and Bedding Planes
 - ➤ Beds represent distinct sedimentary event, times when deposition occurred
 - ➤ Bedding planes represent pauses between sedimentary events, times when deposition ceased

- ☐ Graded Sedimentary Beds
 - **≻**Form in response to decrease in energy during deposition
 - > Larger, heavier clasts, first pebbles then sand, settle out first, in the bottom of the bed
 - > Smaller, lighter clasts, silt and finally clay, settle out last in the top of the bed

Sediment-laden turbidity current flows beneath clear water

Main body of current comes to rest

Fine-grained "tail" of turbidity current continues to flow, adding fine-grained sediment to top of deposit

Progressively finer sediments settle on top of coerse particles

A graded bed

□ Cross Beds

- Cross beds are deposited in response to movement of a current
- Cross beds are unidirectional if the current was constant in direction
- ➤ Cross beds are bidirectional if the <u>current</u> <u>was not constant in</u> <u>direction</u>
- ➤ Note: these beds are tilted

Current direction

■ Mud Cracks

- ➤ Mud cracks form when mud dries up
- ➤ Their shape and size may vary considerably

Mudcracks in a sedimentary rock

- ☐ Ripple Marks
 - Are formed in response to movement of a current
 - Symmetrical ripple marks form if current is back-and-forth, bidirectional
 - Asymmetrical ripple marks form if current is constant in direction

- ☐ Raindrop Imprints and casts
 - >Form when big rain drops fall on mud
 - <u>Raindrop imprints</u> are depressions formed on the bed upon which the raindrops fell
 - <u>Raindrop casts</u> are knobs formed on the bottom of the bed deposited on top of the bed upon which the raindrops fell

Raindrop imprints and mudcracks

□ Fossils

- **≻**Are any evidence of life preserved in ancient rocks
- ➤Include bones, teeth, shells, molds and casts, petrified wood, impressions, footprints, etc.

Chemical Sedimentary Rocks

- derived from material carried in solution to lakes/ seas
- □ *precipitation* from solution to form
 - "chemical sediments"
 - by precipitation from aqueous solution
 - from plant material
 - from animal material

Salt flats, Utah

Death Valley, California

Evaporites

- water evaporates and dissolved stuff is deposited
- ☐ mostly marine rocks, but some lakes/ playas
- □ Salt, gypsum, potash

T&L Fig 6.12

Agate

Chert

- very fine grained silica
- also called flint, jasper, agate
- ☐ most formed in ocean
- occurs as layers (beds)& as irregular blobs in limestone
- ☐ marine creatures remove silica from sea water, make shells

Coquina (rock of shell fragments)

Limestone

- ☐ formed by marine organisms (corals, clams, algae)
- □ composed primarily of calcite (calcium carbonate CaCO3)
- most abundant chemical sedimentary rock
- □ 10% of all sedimentary rocks (by volume)
- ☐ some deposited directly out of ocean or other waters

(Permian) Limestone Mountain, USA

Coal

- buried and compacted plant material
- ☐ different kinds of coal, depending on formation process

Classification of Sedimentary Rocks

Clastic Sedimentary Rocks: Mudstones

Clastic Sedimentary Rocks: Sandstones

Clastic Sedimentary Rocks: Conglomerates

Clastic Sedimentary Rocks: Breccias

Chemical Sedimentary Rocks: Formed by Precipitation from Aqueous Solution

1. The Evaporites

a. Halite (NaCI)

b. Calcite (CaCO₃)

c. Gypsum (CaSO₄. H₂O)

Chert

Chemical Sedimentary Rocks: Formed from Plants Material: The Coal

Peat

Lignite

Bituminous coal (soft coal)

Coal seams in Mesa Verde National Park

Bituminous coal

Chemical Sedimentary Rocks: Formed from Animal Material: The Limestones

All contain CaCO₃

All will fizz in contact with acid

1. Limestone (a limey mudstone)

2. Fossiliferous limestone

3. Coquina

4. Chalk

Thank You